

White Paper Fujitsu PRIMERGY Servers Performance Report PRIMERGY CX270 S2

This document contains a summary of the benchmarks executed for the PRIMERGY CX270 S2.

The PRIMERGY CX270 S2 performance data are compared with the data of other PRIMERGY models and discussed. In addition to the benchmark results, an explanation has been included for each benchmark and for the benchmark environment.

Contents

Document history	2
Technical data	3
SPECcpu2006	6
Disk I/O	10
STREAM	17
LINPACK	19
Literature	22
Contact	23

Document history

Version 1.0

New:

- Technical data
- SPECcpu2006

Approximations based on measurement results of the PRIMERGY CX250 S2 with Xeon E5-2600 v2 series processors

Disk I/O

Measurements with "LSI SW RAID on Intel C600 (Onboard SATA)", "RAID Ctrl SAS 6G 0/1 (D2607)" and "RAID Ctrl SAS 5/6 512MB (D2616)" controllers

 STREAM Measurements with Xeon E5-2600 v2 processor series
 LINPACK

Measurements with Xeon E5-2600 v2 processor series

Technical data

PRIMERGY CX270 S2

Decimal prefixes according to the SI standard are used for measurement units in this white paper (e.g. 1 GB = 10^9 bytes). In contrast, these prefixes should be interpreted as binary prefixes (e.g. 1 GB = 2^{30} bytes) for the capacities of caches and storage modules. Separate reference will be made to any further exceptions where applicable.

Model	PRIMERGY CX270 S2			
Form factor	Server node			
Chipset	Intel C600 series			
Number of sockets	2			
Number of processors orderable	2			
Processor type	Intel [®] Xeon [®] series E5-2600 v2			
Number of memory slots	16 (8 per processor)			
Maximum memory configuration	1024 GB			
Onboard LAN controller	2 × 1 Gbit/s			
Onboard HDD controller	SATA controller for up to 6 × 2.5″ SATA HDDs			
PCI slots	2 × PCI-Express 3.0 x8 1 × PCI-Express 3.0 x16 for GPGPU			

The processor frequency specified in the following table is always at least achieved given full utilization. Processors with Turbo Boost Technology 2.0 additionally permit automatically regulated, dynamic overclocking. The overclocking rate depends on the utilization of the processor and its ambient conditions. As far as utilization is concerned, the number of cores subject to utilization as well as the type and strength of core utilization play a role. Added to these as influencing factors are the strength of the heating, the level of the ambient temperature and the heat dissipation options. As a result of overclocking it is even possible to exceed the thermal design power of the processor for short periods of time.

How much a processor benefits from the Turbo mode in an individual case depends on the respective application and can in some application scenarios even differ from processor example to processor example.

Processors (since system release)									
Processor	Cores	Threads	Cache [MB]	QPI Speed [GT/s]	Processor Frequency [Ghz]	Max. Turbo Frequency at full load [Ghz]	Max. Turbo Frequency [Ghz]	Max. Memory Frequency [MHz]	TDP [Watt]
Xeon E5-2603 v2	4	4	10	6.40	1.80	n/a	n/a	1333	80
Xeon E5-2609 v2	4	4	10	6.40	2.50	n/a	n/a	1333	80
Xeon E5-2637 v2	4	8	15	8.00	3.50	3.60	3.80	1866	130
Xeon E5-2620 v2	6	12	15	7.20	2.10	2.40	2.60	1600	80
Xeon E5-2630Lv2	6	12	15	7.20	2.40	2.60	2.80	1600	60
Xeon E5-2630 v2	6	12	15	7.20	2.60	2.90	3.10	1600	80
Xeon E5-2643 v2	6	12	25	8.00	3.50	3.60	3.80	1866	130
Xeon E5-2640 v2	8	16	20	7.20	2.00	2.30	2.50	1600	95
Xeon E5-2650 v2	8	16	20	8.00	2.60	3.00	3.40	1866	95
Xeon E5-2667 v2	8	16	25	8.00	3.30	3.60	4.00	1866	130
Xeon E5-2650Lv2	10	20	25	7.20	1.70	1.90	2.10	1600	70
Xeon E5-2660 v2	10	20	25	8.00	2.20	2.60	3.00	1866	95
Xeon E5-2670 v2	10	20	25	8.00	2.50	2.90	3.30	1866	115
Xeon E5-2680 v2	10	20	25	8.00	2.80	3.10	3.60	1866	115
Xeon E5-2690 v2	10	20	25	8.00	3.00	3.30	3.60	1866	130
Xeon E5-2695 v2	12	24	30	8.00	2.40	2.80	3.20	1866	115
Xeon E5-2697 v2	12	24	30	8.00	2.70	3.00	3.50	1866	130

Memory modules (since system release)								
Memory module	Capacity [GB]	Ranks	Bit width of the memory chips	Frequency [MHz]	Low voltage	Load reduced	Registered	ECC
4GB (1x4GB) 1Rx4 L DDR3-1600 R ECC (4 GB 1Rx4 PC3L-12800R)	4	1	4	1600	~		~	~
8GB (1x8GB) 2Rx8 L DDR3-1600 U ECC (8 GB 2Rx8 PC3L-12800E)	8	2	8	1600	~			~
8GB (1x8GB) 1Rx4 L DDR3-1600 R ECC (8 GB 1Rx4 PC3L-12800R)	8	1	4	1600	~		~	~
8GB (1x8GB) 2Rx8 DDR3-1866 R ECC (8 GB 2Rx8 PC3-14900R)	8	2	8	1866			~	~
16GB (1x16GB) 2Rx4 L DDR3-1600 R ECC (16 GB 2Rx4 PC3L-12800R)	16	2	4	1600	~		~	~
16GB (1x16GB) 2Rx4 DDR3-1866 R ECC (16 GB 2Rx4 PC3-14900R)	16	2	4	1866			~	~
32GB (1x32GB) 4Rx4 L DDR3-1600 LR ECC (32 GB 4Rx4 PC3L-12800L)	32	4	4	1600	~	~	~	~
64GB (1x64GB) 8Rx4 L DDR3-1333 LR ECC (64 GB 8Rx4 PC3L-10600L)	64	8	4	1333	~	~	~	~

GPGPUs/coprocessors (since system release)						
GPGPU/coprocessor	Cores	Peak double precision floating point performance [GFlops]	Max. number of GPGPUs			
PY NVIDIA Tesla K20 GPGPU	2496	1170	1			
PY NVIDIA Tesla K20X GPGPU	2688	1310	1			
Intel Xeon Phi Co-Processor 5110P	60	1011	1			
Intel Xeon Phi Co-Processor 7120P	61	1208	1			

Some components may not be available in all countries or sales regions.

Detailed technical information is available in the data sheet PRIMERGY CX270 S2.

SPECcpu2006

Benchmark description

SPECcpu2006 is a benchmark which measures the system efficiency with integer and floating-point operations. It consists of an integer test suite (SPECint2006) containing 12 applications and a floating-point test suite (SPECfp2006) containing 17 applications. Both test suites are extremely computing-intensive and concentrate on the CPU and the memory. Other components, such as Disk I/O and network, are not measured by this benchmark.

SPECcpu2006 is not tied to a special operating system. The benchmark is available as source code and is compiled before the actual measurement. The used compiler version and their optimization settings also affect the measurement result.

SPECcpu2006 contains two different performance measurement methods: the first method (SPECint2006 or SPECfp2006) determines the time which is required to process single task. The second method (SPECint_rate2006 or SPECfp_rate2006) determines the throughput, i.e. the number of tasks that can be handled in parallel. Both methods are also divided into two measurement runs, "base" and "peak" which differ in the use of compiler optimization. When publishing the results the base values are always used; the peak values are optional.

Benchmark	Arithmetics	Туре	Compiler optimization	Measurement result	Application	
SPECint2006	integer	peak	aggressive	Spood	single-threaded	
SPECint_base2006	integer	base	conservative	Speed		
SPECint_rate2006	integer	peak	aggressive	Throughput	multi throodod	
SPECint_rate_base2006	integer	base	conservative	Throughput	mulu-uneaded	
SPECfp2006	floating point	peak	aggressive	Spood	single threaded	
SPECfp_base2006	floating point	base	conservative	Speed	single-infeaded	
SPECfp_rate2006	floating point	peak	aggressive	Throughput	multi threaded	
SPECfp_rate_base2006	floating point	base	conservative	Throughput	multi-threaded	

The measurement results are the geometric average from normalized ratio values which have been determined for individual benchmarks. The geometric average - in contrast to the arithmetic average - means that there is a weighting in favour of the lower individual results. Normalized means that the measurement is how fast is the test system compared to a reference system. Value "1" was defined for the SPECint_base2006-, SPECint_rate_base2006, SPECfp_base2006 and SPECfp_rate_base2006 results of the reference system. For example, a SPECint_base2006 value of 2 means that the measuring system has handled this benchmark twice as fast as the reference system. A SPECfp_rate_base2006 value of 4 means that the measuring system has handled this benchmark some 4/[# base copies] times faster than the reference system. "# base copies" specify how many parallel instances of the benchmark have been executed.

Not every SPECcpu2006 measurement is submitted by us for publication at SPEC. This is why the SPEC web pages do not have every result. As we archive the log files for all measurements, we can prove the correct implementation of the measurements at any time.

Benchmark environment

All results have been measured on a PRIMERGY CX250 S2.

System Under Test (SUT)						
Hardware						
Enclosure	PRIMERGY CX400 S2					
Model	PRIMERGY CX250 S2					
Processor	Xeon E5-2600 v2 processor series					
Memory	Xeon E5-2620 v2, E5-2630 v2: 16 × 8GB (1x8GB) 2Rx8 DDR3-1866 R ECC All others: 8 × 16GB (1x16GB) 2Rx4 DDR3-1866 R ECC					
Software						
BIOS settings	Energy Performance = Performance SPECint_base2006, SPECint2006, SPECfp_base2006, SPECfp2006: Utilization Profile = Unbalanced					
Operating system	system Red Hat Enterprise Linux Server release 6.4					
Operating system settings	echo always > /sys/kernel/mm/redhat_transparent_hugepage/enabled					
Compiler	Intel C++/Fortran Compiler 14.0					

Some components may not be available in all countries or sales regions.

Benchmark results

In terms of processors the benchmark result depends primarily on the size of the processor cache, the support for Hyper-Threading, the number of processor cores and on the processor frequency. In the case of processors with Turbo mode the number of cores, which are loaded by the benchmark, determines the maximum processor frequency that can be achieved. In the case of single-threaded benchmarks, which largely load one core only, the maximum processor frequency that can be achieved is higher than with multi-threaded benchmarks (see the processor table in the section "Technical Data").

The approximations presented in the two tables below are based on measurement results of the PRIMERGY CX250 S2.

Processor	Number of processors	SPECint_base2006	SPECint2006	SPECint_rate_base2006	SPECint_rate2006
Xeon E5-2603 v2	2				
Xeon E5-2609 v2	2				
Xeon E5-2637 v2	2	56.2	59.8	409	426
Xeon E5-2620 v2	2			413	429
Xeon E5-2630Lv2	2				
Xeon E5-2630 v2	2	47.3	50.0	486	503
Xeon E5-2643 v2	2				
Xeon E5-2640 v2	2				
Xeon E5-2650 v2	2	52.6	57.0	651	675
Xeon E5-2667 v2	2				
Xeon E5-2650Lv2	2	34.7	37.0	540	561
Xeon E5-2660 v2	2	48.0	51.8	709	734
Xeon E5-2670 v2	2				
Xeon E5-2680 v2	2				
Xeon E5-2690 v2	2				
Xeon E5-2695 v2	2	50.7	54.9		
Xeon E5-2697 v2	2	55.3	60.0		

Processor	Number of processors	SPECfp_base2006	SPECfp2006	SPECfp_rate_base2006	SPECfp_rate2006
Xeon E5-2603 v2	2				
Xeon E5-2609 v2	2				
Xeon E5-2637 v2	2				
Xeon E5-2620 v2	2			378	386
Xeon E5-2630Lv2	2				
Xeon E5-2630 v2	2	83.0	86.0	423	433
Xeon E5-2643 v2	2				
Xeon E5-2640 v2	2				
Xeon E5-2650 v2	2				
Xeon E5-2667 v2	2				
Xeon E5-2650Lv2	2	66.6	69.3	454	464
Xeon E5-2660 v2	2			558	572
Xeon E5-2670 v2	2				
Xeon E5-2680 v2	2				
Xeon E5-2690 v2	2				
Xeon E5-2695 v2	2	91.1	95.5		
Xeon E5-2697 v2	2			654	673

Disk I/O

Benchmark description

Performance measurements of disk subsystems for PRIMERGY servers are used to assess their performance and enable a comparison of the different storage connections for PRIMERGY servers. As standard, these performance measurements are carried out with a defined measurement method, which models the hard disk accesses of real application scenarios on the basis of specifications.

The essential specifications are:

- Share of random accesses / sequential accesses
- Share of read / write access types
- Block size (kB)
- Number of parallel accesses (# of outstanding I/Os)

A given value combination of these specifications is known as "load profile". The following five standard load profiles can be allocated to typical application scenarios:

Standard load	andard load Access Type of access Block size		Application		
profile		read	write	[kB]	
File copy	random	50%	50%	64	Copying of files
File server	random	67%	33%	64	File server
Database	random	67%	33%	8	Database (data transfer) Mail server
Streaming	sequential	100%	0%	64	Database (log file), Data backup; Video streaming (partial)
Restore	sequential	0%	100%	64	Restoring of files

In order to model applications that access in parallel with a different load intensity, the "# of Outstanding I/Os" is increased, starting with 1, 3, 8 and going up to 512 (from 8 onwards in increments to the power of two).

The measurements of this document are based on these standard load profiles.

The main results of a measurement are:

- Throughput [MB/s] Throughput in megabytes per second
- Transactions [IO/s] Transaction rate in I/O operations per second
- Latency [ms] Average response time in ms

The data throughput has established itself as the normal measurement variable for sequential load profiles, whereas the measurement variable "transaction rate" is mostly used for random load profiles with their small block sizes. Data throughput and transaction rate are directly proportional to each other and can be transferred to each other according to the formula

Data throughput [MB/s]	= Transaction rate [IO/s] × Block size [MB]
Transaction rate [IO/s]	= Data throughput [MB/s] / Block size [MB]

This section specifies hard disk capacities on a basis of 10 (1 TB = 10^{12} bytes) while all other capacities, file sizes, block sizes and throughputs are specified on a basis of 2 (1 MB/s = 2^{20} bytes/s).

All the details of the measurement method and the basics of disk I/O performance are described in the white paper "Basics of Disk I/O Performance".

Benchmark environment

All the measurement results discussed in this chapter were determined using the hardware and software components listed below:

System Under Test (SUT)							
Hardware	Hardware						
Controller	1 × "LSI SW RAID on Intel C600 (Onboard SATA)" 1 × "RAID Ctrl SAS 6G 0/1 (D2607)" 1 × "RAID Ctrl SAS 5/6 512MB (D2616)"						
Drive	6 × EP HDD SAS 6 Gbit/s 2.5" 15000 rpm 146 GB 6 × EP SSD SAS 6 Gbit/s 2.5" 200 GB MLC 6 × EP SSD SATA 6 Gbit/s 2.5" 200 GB MLC 4 × BC HDD SATA 6 Gbit/s 2.5" 7200 rpm 1 TB 6 × BC HDD SATA 6 Gbit/s 3.5" 7200 rpm 3 TB						
Software							
Operating system	Microsoft Windows Server 2008 Enterprise x64 Edition SP2 Microsoft Windows Server 2012 Standard						
Administration software	ServerView RAID Manager 5.7.2						
Initialization of RAID arrays	RAID arrays are initialized before the measurement with an elementary block size of 64 kB ("stripe size")						
File system	NTFS						
Measuring tool	lometer 2006.07.27						
Measurement data	Measurement files of 32 GB with 1 $-$ 8 hard disks; 64 GB with 9 $-$ 16 hard disks; 128 GB with 17 or more hard disks						

Some components may not be available in all countries / sales regions.

Benchmark results

The results presented here are designed to help you choose the right solution from the various configuration options of the PRIMERGY CX270 S2 in the light of disk-I/O performance. The selection of suitable components and the right settings of their parameters is important here. These two aspects should therefore be dealt with as preparation for the discussion of the performance values.

Components

The hard disks are the first essential component. If there is a reference below to "hard disks", this is meant as the generic term for HDDs ("hard disk drives", in other words conventional hard disks) and SSDs ("solid state drives", i.e. non-volatile electronic storage media). When selecting the type of hard disk and number of hard disks you can move the weighting in the direction of storage capacity, performance, security or price. In order to enable a pre-selection of the hard disk types – depending on the required weighting – the hard disk types for PRIMERGY servers are divided into three classes:

- "Economic" (ECO): low-priced hard disks
- "Business Critical" (BC): very failsafe hard disks
- "Enterprise" (EP): very failsafe and very high-performance hard disks

The following table is a list of the hard disk types that have been available for the PRIMERGY CX270 S2 since system release.

Drive class	Data medium type	Interface	Form factor	krpm
Business Critical	HDD	SATA 6G	2.5"	7.2
Business Critical	HDD	SATA 6G	3.5"	7.2
Business Critical	HDD	SAS 6G	2.5"	7.2
Business Critical	HDD	SAS 6G	3.5"	7.2
Enterprise	HDD	SAS 6G	2.5"	10, 15
Enterprise	SSD	SATA 6G	2.5"	-
Enterprise	SSD	SAS 6G	2.5"	-

Mixed drive configurations of SAS and SATA hard disks in one system are permitted, unless they are excluded in the configurator for special hard disk types.

The SATA-HDDs offer high capacities right up into the terabyte range at a very low cost. The SAS-HDDs have shorter access times and achieve higher throughputs due to the higher rotational speed of the SAS-HDDs (in comparison with the SATA-HDDs). SAS-HDDs with a rotational speed of 15 krpm have better access times and throughputs than comparable HDDs with a rotational speed of 10 krpm. The 6G interface has in the meantime established itself as the standard among the SAS-HDDs.

Of all the hard disk types SSDs offer on the one hand by far the highest transaction rates for random load profiles, and on the other hand the shortest access times. In return, however, the price per gigabyte of storage capacity is substantially higher.

More hard disks per system are possible as a result of using 2.5" hard disks instead of 3.5" hard disks. Consequently, the load that each individual hard disk has to overcome decreases and the maximum overall performance of the system increases.

More detailed performance statements about hard disk types are available in the white paper "<u>Single Disk</u> <u>Performance</u>".

The maximum number of hard disks in the system depends on the system configuration. The following table lists the essential cases.

Form factor	Interface	Connection type	Number of PCIe controllers	Maximum number of hard disks
2.5"	SATA 3G, SAS 3G	direct	0	4*)
2.5", 3.5"	SATA 6G, SAS 6G	direct	1	6

*) If no PRIMERGY RAID-Management is used, six hard disks are possible.

After the hard disks the RAID controller is the second performance-determining key component. In the case of these controllers the "modular RAID" concept of the PRIMERGY servers offers a plethora of options to meet the various requirements of a wide range of different application scenarios.

The following table summarizes the most important features of the available RAID controllers of the PRIMERGY CX270 S2. A short alias is specified here for each controller, which is used in the subsequent list of the performance values.

Controller name	Alias	Cache	Suppor interfa	rted ces	Max. # disks in the system	RAID levels in the system	BBU/ FBU
LSI SW RAID on Intel C600 (Onboard SATA)	Patsburg A	-	SATA 3G	-	4 × 2.5"	0, 1, 10	-/-
RAID Ctrl SAS 6G 0/1 (D2607)	LSI2008	-	SATA 3G/6G SAS 3G/6G	PCle 2.0 x8	6 × 2.5" 6 × 3.5"	0, 1, 1E, 10	-/-
RAID Ctrl SAS 6G 5/6 512MB (D2616)	LSI2108	512 MB	SATA 3G/6G SAS 3G/6G	PCIe 2.0 x8	6 × 2.5" 6 × 3.5"	0, 1, 5, 6, 10, 50, 60	√/-

The onboard RAID controller is implemented in the chipset Intel C600 on the motherboard of the server and uses the CPU of the server for the RAID functionality. This controller is a simple solution that does not require a PCIe slot.

System-specific interfaces

The interfaces of a controller to the motherboard and to the hard disks have in each case specific limits for data throughput. These limits are listed in the following table. The minimum of these two values is a definite limit, which cannot be exceeded. This value is highlighted in bold in the following table.

Controller	Effective in the	configuration				Connection	
anas	# Disk channels	Limit for throughput of disk interface	PCIe version	PCle width	Limit for throughput of PCle interface	via expander	
Patsburg A	4 × SATA 3G	973 MB/s	-	-	-	-	
LSI2008	6 × SAS 6G	2918 MB/s	2.0	x8	3433 MB/s	-	
LSI2108	6 × SAS 6G	2918 MB/s	2.0	x8	3433 MB/s	-	

More details about the RAID controllers of the PRIMERGY systems are available in the white paper "<u>RAID</u> <u>Controller Performance</u>".

Settings

In most cases, the cache of the hard disks has a great influence on disk-I/O performance. This is particular valid for HDDs. It is frequently regarded as a security problem in case of power failure and is thus switched off. On the other hand, it was integrated by hard disk manufacturers for the good reason of increasing the write performance. For performance reasons it is therefore advisable to enable the hard disk cache. This is particular valid for SATA-HDDs. The performance can as a result increase more than tenfold for specific access patterns and hard disk types. More information about the performance impact of the hard disk cache is available in the document "<u>Single Disk Performance</u>". To prevent data loss in case of power failure you are recommended to equip the system with a UPS.

In the case of controllers with a cache there are several parameters that can be set. The optimal settings can depend on the RAID level, the application scenario and the type of data medium. In the case of RAID levels 5 and 6 in particular (and the more complex RAID level combinations 50 and 60) it is obligatory to enable the controller cache for application scenarios with write share. If the controller cache is enabled, the data temporarily stored in the cache should be safeguarded against loss in case of power failure. Suitable accessories are available for this purpose (e.g. a BBU or FBU).

For the purpose of easy and reliable handling of the settings for RAID controllers and hard disks it is advisable to use the RAID-Manager software "ServerView RAID" that is supplied for PRIMERGY servers. All the cache settings for controllers and hard disks can usually be made en bloc – specifically for the application – by using the pre-defined modi "Performance" or "Data Protection". The "Performance" mode ensures the best possible performance settings for the majority of the application scenarios.

More information about the setting options of the controller cache is available in the white paper "<u>RAID</u> <u>Controller Performance</u>".

Performance values

In general, disk-I/O performance of a RAID array depends on the type and number of hard disks, on the RAID level and on the RAID controller. If the limits of the <u>system-specific interfaces</u> are not exceeded, the statements on disk-I/O performance are therefore valid for all PRIMERGY systems. This is why all the performance statements of the document "<u>RAID Controller Performance</u>" also apply for the PRIMERGY CX270 S2 if the configurations measured there are also supported by this system.

The performance values of the PRIMERGY CX270 S2 are listed in table form below, specifically for different RAID levels, access types and block sizes. Substantially different configuration versions are dealt with separately.

The performance values in the following tables use the established measurement variables, as already mentioned in the subsection <u>Benchmark description</u>. Thus, transaction rate is specified for random accesses and data throughput for sequential accesses. To avoid any confusion among the measurement units the tables have been separated for the two access types.

The table cells contain the maximum achievable values. This has three implications: On the one hand hard disks with optimal performance were used (the components used are described in more detail in the subsection <u>Benchmark environment</u>). Furthermore, cache settings of controllers and hard disks, which are optimal for the respective access scenario and the RAID level, are used as a basis. And ultimately each value is the maximum value for the entire load intensity range (# of outstanding I/Os).

In order to also visualize the numerical values each table cell is highlighted with a horizontal bar, the length of which is proportional to the numerical value in the table cell. All bars shown in the same scale of length have the same color. In other words, a visual comparison only makes sense for table cells with the same colored bars.

Since the horizontal bars in the table cells depict the maximum achievable performance values, they are shown by the color getting lighter as you move from left to right. The light shade of color at the right end of the bar tells you that the value is a maximum value and can only be achieved under optimal prerequisites. The darker the shade becomes as you move to the left, the more frequently it will be possible to achieve the corresponding value in practice.

	Configuration version	•		'el	dom ks d	dom cks d	ks d	lom cks d			
RAID Controller	Hard disk type	Form factor	#Disks	RAID lev	HDDs ranc 8 kB bloc 67% rea [10/s]	HDDs ranc 64 kB bloc 67% rea [IO/s]	SSDs ranc 8 kB bloc 67% rea [IO/s]	SSDs ranc 64 kB bloo 67% rea [IO/s]			
			2	1	550	447	17760	3951			
Patsburg A	FP SATA SSD	2.5"	4	0	1073	583	36497	8249			
			4	10	828	446	28683	6665			
						2	1	820	702	17649	4117
LSI2008		2.5"	6	0	2853	1584	47603	11470			
	ET OAD OOD		6	10	2173	1190	28360	9328			
			2	1	518	462	N/A	N/A			
LSI2008	BC SATA HDD	3.5"	6	0	1639	950	N/A	N/A			
			6	10	1223	692	N/A	N/A			
			2	1	862	731	19002	4400			
1 512109	EP SAS HDD	2.5"	6	10	3190	1643	27432	15504			
1012100	EP SAS SSD	2.5	6	0	4060	2125	68001	18495			
			6	5	2360	1245	18452	7573			
			2	1	625	538	N/A	N/A			
1 812109		2 5"	6	10	1772	959	N/A	N/A			
L312100	BC SAIANDD	3.5	6	0	2270	1188	N/A	N/A			
			6	5	1201	665	N/A	N/A			

Random accesses (performance values in IO/s):

	Configuration version			'el	ential cks ad	ential cks ite	ential cks ad	ential cks ite	
RAID Controller	Hard disk type	Form factor	#Disks	RAID lev	HDDs sequi 64 kB bloo 100% re: [MB/s]	HDDs sequi 64 kB bloo 100% wr [MB/s]	SSDs seque 64 kB bloc 100% rei [MB/s]	SSDs seque 64 kB bloc 100% wr [MB/s]	
			2	1	112	108	506	175	
Patsburg A	EP SATA SSD	2.5"	4	0	422	419	946	718	
			4	10	226	213	662	338	
			2	1	287	190	338	199	
LSI2008	EP SAS SSD	2.5"	6	0	728	733	1885	1167	
	2. 0, 0 000			6	10	597	363	973	484
			2	1	180	153	N/A	N/A	
LSI2008	BC SATA HDD	3.5"	6	0	872	865	N/A	N/A	
			6	10	463	430	N/A	N/A	
			2	1	371	192	680	176	
1 512108	EP SAS HDD	25"	6	10	788	577	1493	647	
2012100	EP SAS SSD	2.0	6	0	1170	1022	1858	1184	
			6	5	933	960	1651	1019	
			2	1	277	154	N/A	N/A	
1 512108		35"	6	10	520	451	N/A	N/A	
1012100	DO SATATIDO	5.5	6	0	879	876	N/A	N/A	
			6	5	730	741	N/A	N/A	

Sequential accesses (performance values in MB/s):

The use of one controller at its maximum configuration with powerful hard disks (configured as RAID 0) enables the PRIMERGY CX270 S2 to achieve a throughput of up to 1858 MB/s for sequential load profiles and a transaction rate of up to 68001 IO/s for typical, random application scenarios.

STREAM

Benchmark description

STREAM is a synthetic benchmark that has been used for many years to determine memory throughput and which was developed by John McCalpin during his professorship at the University of Delaware. Today STREAM is supported at the University of Virginia, where the source code can be downloaded in either Fortran or C. STREAM continues to play an important role in the HPC environment in particular. It is for example an integral part of the HPC Challenge benchmark suite.

The benchmark is designed in such a way that it can be used both on PCs and on server systems. The unit of measurement of the benchmark is GB/s, i.e. the number of gigabytes that can be read and written per second.

STREAM measures the memory throughput for sequential accesses. These can generally be performed more efficiently than accesses that are randomly distributed on the memory, because the CPU caches are used for sequential access.

Before execution the source code is adapted to the environment to be measured. Therefore, the size of the data area must be at least four times larger than the total of all CPU caches so that these have as little influence as possible on the result. The OpenMP program library is used to enable selected parts of the program to be executed in parallel during the runtime of the benchmark, consequently achieving optimal load distribution to the available processor cores.

During implementation the defined data area, consisting of 8-byte elements, is successively copied to four types, and arithmetic calculations are also performed to some extent.

Туре	Execution	Bytes per step	Floating-point calculation per step
COPY	a(i) = b(i)	16	0
SCALE	$a(i) = q \times b(i)$	16	1
SUM	a(i) = b(i) + c(i)	24	1
TRIAD	$a(i) = b(i) + q \times c(i)$	24	2

The throughput is output in GB/s for each type of calculation. The differences between the various values are usually only minor on modern systems. In general, only the determined TRIAD value is used as a comparison.

The measured results primarily depend on the clock frequency of the memory modules; the CPUs influence the arithmetic calculations. The accuracy of the results is approximately 5%.

This chapter specifies throughputs on a basis of 10 (1 GB/s = 10^9 Byte/s).

Benchmark environment

System Under Test	(SUT)
Hardware	
Enclosure	PRIMERGY CX400 S2
Model	PRIMERGY CX270 S2
Processor	2 processors of Xeon E5-2600 v2 processor series
Memory	8 × 16GB (1x16GB) 2Rx4 DDR3-1866 R ECC
Software	
BIOS settings	Processors other than Xeon E5-2603 v2, E5-2609 v2: Hyper-Threading = Disabled
Operating system	Red Hat Enterprise Linux Server release 6.4
Operating system settings	echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled
Compiler	Intel C Compiler 12.1
Benchmark	Stream.c Version 5.9

Some components may not be available in all countries or sales regions.

Benchmark results

Processor	Cores	Processor Frequency [Ghz]	Max. Memory Frequency [MHz]	TRIAD [GB/s]
2 × Xeon E5-2603 v2	4	1.80	1333	48.4
2 x Xeon E5-2609 v2	4	2.50	1333	59.4
2 × Xeon E5-2637 v2	4	3.50	1866	82.2
2 × Xeon E5-2620 v2	6	2.10	1600	78.9
2 × Xeon E5-2630Lv2	6	2.40	1600	80.5
2 × Xeon E5-2630 v2	6	2.60	1600	81.9
2 × Xeon E5-2643 v2	6	3.50	1866	
2 × Xeon E5-2640 v2	8	2.00	1600	83.4
2 × Xeon E5-2650 v2	8	2.60	1866	97.0
2 × Xeon E5-2667 v2	8	3.30	1866	
2 × Xeon E5-2650Lv2	10	1.70	1600	81.9
2 × Xeon E5-2660 v2	10	2.20	1866	96.1
2 × Xeon E5-2670 v2	10	2.50	1866	97.3
2 × Xeon E5-2680 v2	10	2.80	1866	97.9
2 × Xeon E5-2690 v2	10	3.00	1866	98.5
2 × Xeon E5-2695 v2	12	2.40	1866	101
2 × Xeon E5-2697 v2	12	2.70	1866	101

The results depend primarily on the maximum memory frequency. The processors with only 4 cores, which do not fully utilize their memory controller, are an exception. The smaller differences with processors with the same maximum memory frequency are a result in arithmetic calculation of the different processor frequencies.

The following diagram illustrates the throughput of the PRIMERGY CX270 S2 in comparison to its predecessor, the PRIMERGY CX270 S1, in their most performant configuration.

LINPACK

Benchmark description

LINPACK was developed in the 1970s by Jack Dongarra and some other people to show the performance of supercomputers. The benchmark consists of a collection of library functions for the analysis and solution of linear system of equations. A description can be found in the document http://www.netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf.

LINPACK can be used to measure the speed of computers when solving a linear equation system. For this purpose, an $n \times n$ matrix is set up and filled with random numbers between -2 and +2. The calculation is then performed via LU decomposition with partial pivoting.

A memory of $8n^2$ bytes is required for the matrix. In case of an n × n matrix the number of arithmetic operations required for the solution is $2/3n^3 + 2n^2$. Thus, the choice of n determines the duration of the measurement: a doubling of n results in an approximately eight-fold increase in the duration of the measurement. The size of n also has an influence on the measurement result itself: as n increases, the measured value asymptotically approaches a limit. The size of the matrix is therefore usually adapted to the amount of memory available. Furthermore, the memory bandwidth of the system only plays a minor role for the measurement result, but a role that cannot be fully ignored. The processor performance is the decisive factor for the measurement result. Since the algorithm used permits parallel processing, in particular the number of processors used and their processor cores are - in addition to the clock rate - of outstanding significance.

LINPACK is used to measure how many floating point operations were carried out per second. The result is referred to as **Rmax** and specified in GFlops (Giga Floating Point Operations per Second).

An upper limit, referred to as **Rpeak**, for the speed of a computer can be calculated from the maximum number of floating point operations that its processor cores could theoretically carry out in one clock cycle:

Rpeak = Maximum number of floating point operations per clock cycle × Number of processor cores of the computer × Maximum processor frequency[GHz]

LINPACK is classed as one of the leading benchmarks in the field of high performance computing (HPC). LINPACK is one of the seven benchmarks currently included in the HPC Challenge benchmark suite, which takes other performance aspects in the HPC environment into account.

Manufacturer-independent publication of LINPACK results is possible at <u>http://www.top500.org/</u>. The use of a LINPACK version based on HPL is prerequisite for this (see: <u>http://www.netlib.org/benchmark/hpl</u>).

Intel offers a highly optimized LINPACK version (shared memory version) for individual systems with Intel processors. Parallel processes communicate here via "shared memory", i.e. jointly used memory. Another version provided by Intel is based on HPL (High Performance Linpack). Intercommunication of the LINPACK processes here takes place via OpenMP and MPI (Message Passing Interface). This enables communication between the parallel processes - also from one computer to another. Both versions can be downloaded from http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/.

Manufacturer-specific LINPACK versions also come into play when graphics cards for General Purpose Computation on Graphics Processing Unit (GPGPU) are used. These are based on HPL and include extensions which are needed for communication with the graphics cards.

Benchmark environment

System Under Test (SU	т)
Hardware	
Enclosure	PRIMERGY CX400 S2
Model	PRIMERGY CX270 S2
Processor	2 processors of Xeon E5-2600 v2 processor series
Memory	16 × 8GB (1x8GB) 2Rx8 DDR3-1866 R ECC
Software	
BIOS settings	All processors apart from Xeon E5-2603 v2, E5-2609 v2: Hyper Threading = Disabled All processors apart from Xeon E5-2603 v2, E5-2609 v2: Turbo Mode = Enabled (default) = Disabled
Operating system	Red Hat Enterprise Linux Server release 6.4
Benchmark	HPL version: Intel Optimized MP LINPACK Benchmark for Clusters 11.0 Update 5 for Linux OS

Some components may not be available in all countries or sales regions.

Benchmark results

		ız]	sy		Without T	urbo Mode	With Turbo Mode		
Processor	Cores	Processor frequency [Gh	Maximum turbo frequen at full load [Ghz]	Number of processors	Rpeak [GFlops]	Rmax [GFlops]	Rpeak [GFlops]	Rmax [GFlops]	
Xeon E5-2603 v2	4	1.80	n/a	2	115	110			
Xeon E5-2609 v2	4	2.50	n/a	2	160	152			
Xeon E5-2637 v2	4	3.50	3.60	2	224	213	230	220	
Xeon E5-2620 v2	6	2.10	2.40	2	202	192	230	219	
Xeon E5-2630Lv2	6	2.40	2.60	2	230	219	250	238	
Xeon E5-2630 v2	6	2.60	2.90	2	250	238	278	265	
Xeon E5-2643 v2	6	3.50	3.60	2	336		346		
Xeon E5-2640 v2	8	2.00	2.30	2	256	244	294	280	
Xeon E5-2650 v2	8	2.60	3.00	2	333		384		
Xeon E5-2667 v2	8	3.30	3.60	2	422		461		
Xeon E5-2650Lv2	10	1.70	1.90	2	272	259	304	289	
Xeon E5-2660 v2	10	2.20	2.60	2	352	335	416	396	
Xeon E5-2670 v2	10	2.50	2.90	2	400		464		
Xeon E5-2680 v2	10	2.80	3.10	2	448	426	496	459	
Xeon E5-2690 v2	10	3.00	3.30	2	480	456	528	487	
Xeon E5-2695 v2	12	2.40	2.80	2	461		538		
Xeon E5-2697 v2	12	2.70	3.00	2	518		576		

Rmax = Measurement result

Rpeak = Maximum number of floating point operations per clock cycle × Number of processor cores of the computer × Maximum processor frequency[GHz]

The following applies for processors without Turbo mode and for those with Turbo mode disabled:

Maximum processor frequency[GHz] = Nominal processor frequency[GHz]

Processors with Turbo mode enabled are not limited by the nominal processor frequency and therefore do not provide a constant processor frequency. Instead the actual processor frequency swings - depending on temperature and power consumption - between the nominal processor frequency and maximum turbo frequency at full load. Therefore, the following applies for these processors:

Maximum processor frequency[*GHz*] = *Maximum turbo frequency at full load*[*GHz*]

Literature

http://primergy.com/
PRIMERGY CX270 S2
This White Paper: <u>http://docs.ts.fujitsu.com/dl.aspx?id=cb75e451-a6c8-41e3-afe0-f81956ec1ed1</u> <u>http://docs.ts.fujitsu.com/dl.aspx?id=38b02180-dd8e-4eb3-9d69-3d30529f8734</u> <u>http://docs.ts.fujitsu.com/dl.aspx?id=94f06654-9c38-4575-b3b6-3ef88bb6124e</u> Data sheet <u>http://docs.ts.fujitsu.com/dl.aspx?id=b2baf2e0-6b18-4d0a-8293-cfcdeba76850</u> Memory performance of Xeon E5-2600 v2 (Ivy Bridge-EP)-based systems
http://docs.ts.fujitsu.com/dl.aspx?id=a344b05e-2e9d-481b-8c9b-c6542defd839
PRIMERGY Performance
http://www.fujitsu.com/fts/products/computing/servers/primergy/benchmarks/
Disk I/O
Basics of Disk I/O Performance http://docs.ts.fujitsu.com/dl.aspx?id=65781a00-556f-4a98-90a7-7022feacc602
Single Disk Performance http://docs.ts.fujitsu.com/dl.aspx?id=0e30cb69-44db-4cd5-92a7-d38bacec6a99
RAID Controller Performance http://docs.ts.fujitsu.com/dl.aspx?id=e2489893-cab7-44f6-bff2-7aeea97c5aef
Information about lometer http://www.iometer.org
LINPACK
The LINPACK Benchmark: Past, Present, and Future http://www.netlib.org/utk/people/JackDongarra/PAPERS/hplpaper.pdf .
TOP500 http://www.top500.org/
HPL - A Portable Implementation of the High-Performance Linpack Benchmark for Distributed- Memory Computers
http://www.netlib.org/benchmark/hpl
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/ SPECcpu2006
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/ SPECcpu2006 http://www.spec.org/osg/cpu2006
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/ SPECcpu2006 http://www.spec.org/osg/cpu2006 Benchmark overview SPECcpu2006 http://docs.ts.fujitsu.com/dl.aspx?id=1a427c16-12bf-41b0-9ca3-4cc360ef14ce
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/ SPECcpu2006 http://www.spec.org/osg/cpu2006 Benchmark overview SPECcpu2006 http://docs.ts.fujitsu.com/dl.aspx?id=1a427c16-12bf-41b0-9ca3-4cc360ef14ce STREAM
http://www.netlib.org/benchmark/hpl Intel Math Kernel Library – LINPACK Download http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download/ SPECcpu2006 http://www.spec.org/osg/cpu2006 Benchmark overview SPECcpu2006 http://docs.ts.fujitsu.com/dl.aspx?id=1a427c16-12bf-41b0-9ca3-4cc360ef14ce STREAM http://www.cs.virginia.edu/stream/

Contact

FUJITSU	
Website: http://www.fujitsu.com/	
PRIMERGY Product Marketing	
mailto:Primergy-PM@ts.fujitsu.com	
PRIMERGY Performance and Benchmarks	
mailto:primergy benchmark@ts fujitsu.com	

[©] Copyright 2013 Fujitsu Technology Solutions. Fujitsu and the Fujitsu logo are trademarks or registered trademarks of Fujitsu Limited in Japan and other countries. Other company, product and service names may be trademarks or registered trademarks of their respective owners. Technical data subject to modification and delivery subject to availability. Any liability that the data and illustrations are complete, actual or correct is excluded. Designations may be trademarks and/or copyrights of the respective manufacturer, the use of which by third parties for their own purposes may infringe the rights of such owner. For further information see http://www.fujitsu.com/fts/resources/navigation/terms-of-use.html 2013-10-02 WW EN